

ENERGY TRANSITION AND HYDROGEN COMBUSTON

9th TFTEI Annual Meeting UN-ECE CONVENTION ON LONG-RANGE TRANSBOUNDARY AIR POLLUTION 12 & 13 June 2023

Industrial combustion Expert

Fives Pillard Technical & Innovation Director

Working member of IFRF – French committee

ENERGY TRANSITION AND HYDROGEN TRANSITION

- 1. H2 production methods
- 2. Main thermal & economical data
- 3. H2 combustion & burners

Technology	SMR / ATR	Electrolyser	Plasma	
Maturity	TRL 9	TRL 9	TRL 5 – 8	
Plant Capacity t/h	10-100	< 1 (2022 ↑) 2022 : 20 -30 MWe plants commissioned	1-5 (1 plant in the world)	
Eq in MW th H ₂ (for combustion purpose)	330 - 3300	< 33 (2022↑)	33 - 165 3.5 - 5.0 • Electricity consumption • Solid C capture	
H₂ Cost in €/kg	1.5 - 3	4.5 - 6.5		
Advantages	CostCapacity	 Green (with green electricity) 		
Disadvantages	 CO2 recovery (70%) CO2 storage chain maturity and cost CH₄ feedstock 	 Cost (High Capex/Opex) Electricity consumption 	 Maturity CH₄ feedstock High capex (prototype) 	

ENERGY TRANSITION AND HYDROGEN TRANSITION

- 1. H2 production methods
- 2. Main thermal & economical data
- 3. H2 combustion & burners

	NG	H ₂	Unit	H2 vs NG	
Density	0,72	0,09	Kg/Nm ³	/ 8 → Easy to leak, required HP storage to be effective High velocity in piping, difficult to measure	
LHV (vol)	10,2	3,0	kWh/Nm³	/ 3 \rightarrow Much more volume to handle for same capacity	
Stochiometric air ratio	0,98	0,8	Nm ³ air / kWh fuel	/ 1,2 → Less air required / Hotter Flame	
Energy of activation	0,29	0,02	mJ	/ 15 → Low energy needed to ignit hydrogen	

Main economical data

Production of Hydrogen & Energy cost

	H ₂	Eq. Volume	Eq. Therma	l Elec	req. (Electrolyse) Oxygen (Electrolyser)
Production	1 T/h	11 kNm³/ h	33 MWth LHV	Ľ	55 MWe (e=60%)	8 T/h O ₂
	cost	Eq Therm	al Cost	125		125%
NG (Europe 02/2023)		61 € / MV	Vh LHV	100 -		100%
CO2 (ref only - Europe)	100 €/T	22 € / MWh LHV (NG) 135 € / MWhe		- 75 - 75 - 000 -		75% reduction, 91% hydrogen
Elec (Europe 02/2023)				00 - 00 -		50% reduction,
H ₂ (electrolyser ref)	5,5 €/kg	180 € / M\	Wh ∟н∨	25 -	*	76% hydrogen 25%
				0,0		réduction, 51% nyarogen hydrogen 0,0% 50,0% 60,0% 70,0% 80,0% 90,0% 100,0%

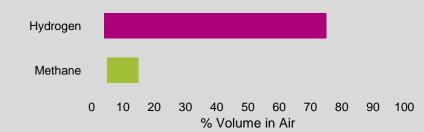
Effective Decarbonization needs high % vol of hydrogen

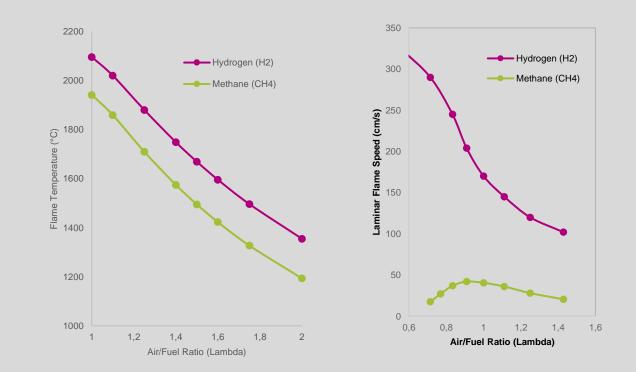
% Hydrogen in Mix (vol)

ENERGY TRANSITION AND HYDROGEN TRANSITION

- 1. H2 production methods
- 2. Main thermal & economical data

3. H2 combustion & burners


Main driver for combustion : Hydrogen vs Natural Gas


x 5

x 7

-120°C

- Higher flame temperatures (+150°C)
- Faster flame speed
- Wider flammability limits
- Lower autoignition temperature

Main Impacts on burners :

3,00

2,50

2,00

1,50

1,00

0,50

0,00

0%

10%

20%

30%

40%

50%

H2 %vol

60%

70%

80%

90%

100%

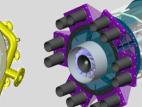
NOx increasing factor

- Warmer and more intense flames in the zone of primary combustion
- High formation of NOx of thermal origin and Prompt NO

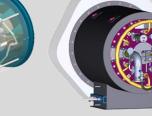
- 1. Sturdy, heat resistant and adapted burner designs
- 2. Adapted injection velocities
- 3. NOx increases : from few % to 210% (burner techno dependant)

9

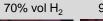




Fives Pillard - Large range of H₂ compatible burners for most of the industrial processes


ENERGY / CEMENT / MINERAL

UP TO 100% HYDROGEN LOW NOX BURNERS FOR BOILERS



Pillard LONOxFLAM[®] G2

- Pillard LONOxFLAM® AS
- Pillard NANOxFLAM®

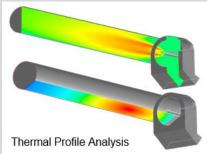
Hy-Ductflam[™] (New patented product)



Pillard NOVAFLAM[®] Evolution & Pillard ROTAFLAM[®]

PELLETIZING

HYDROGEN COMPATIBLE HOT GAS **GENERATOR FOR DRYING PROCESS**


Pillard[®] Heat Gen System

Fives Pillard - CFD advanced process modelling for H2 combustion

- > Advanced kinetics models / Advanced turbulence models
- > New CFD models : standard RANS method vs new LBM method

D ())

		Detailed approach	
	$H_2 + 1/2 O_2 \rightarrow H_2O$	H2 + O2 = OH + OH	- 1200 1300 1400 1500 1600 1200 1600 2.0⇔403
	Too simple model	H + O2 = OH + O	
		O + H2 = OH + H	
		H + O2 + M = HO2 + M	
		H + O2 + O2 = HO2 + O2	
2		OH + HO2 = H2O + O2	
		H + HO2 = OH + OH	
		O + HO2 = O2 + OH	
	Reduced model	OH + OH = O + H2O	
"	3H₂ + O₂ ⇔ 2H₂O + 2 H	H2 + M = H + H + M	
		02 + M = O + O + M	
	$H + H + M \Leftrightarrow H_2 + M$	H + OH + M = H2O + M	

Fives Pillard – Valve skids, Piping & Instrumentations - Safety

- > Material compatibility
- Piping codes to apply (PED, ASME, API...)
- Leakage test and line purging
- Flame detection and ignitor
- Risk assessment and regulation (EN 746-2 / NFPA)
 - At that stage of know-how about H2 implementation, a global risk analysis managed by end-user with equipment suppliers and third party (Hazop type) is recommended

- Green H2 still not competitive compared to existing industrial hydrogen production
- > Usage of H2 for burners needs some adjustments and precautions, but nothing prohibitive
- > Development of ultra-low NOx burners is needed for H2 firing
- > NOx regulation for H2 firing still be to adapted

THANK YOU FOR YOUR ATTENTION !

QUESTIONS...

9th TFTEI Annual Meeting UN-ECE CONVENTION ON LONG-RANGE TRANSBOUNDARY AIR POLLUTION 12 & 13 June 2023

Industrial combustion Expert

Fives Pillard Technical & Innovation Director Working member of IFRF – French committee

Acronyms

- SMR = Steam Methane Reforming
- ATR = Auto Thermal Reforming
- NG = Natural Gas
- LHV = Low Heating Value
- CFD = Computational Fluid Dynamics
- RANS = Reynolds Averaged Navier-Stokes
- LBM = Lattice Boltzmann Method
- PED = Pressure Equipment Directive
- ASME = American Society of Mechanical Engineers
- API = American Petroleum Institute
- EN = European Norm
- NFPA = National Fire Protection Association
- HAZOP = HAZard and OPerability